No).
	No

0

0

0

V

2

V

V

4

5

- 0

ø

END SEMESTER EXAMINATION, EVEN SEM 2022-23

Time : 3 hours Program Name : B. Tech (CE, ME & EEE) Course Name : Analytical Mathematics Total Marks : 100 Semester : II

Course Code : BTBS203

122 1

Note: All questions are compulsory. No student is allowed to leave the examination hall before the completion of the time.

O No 4	All a la F Marke	CO	BL
Q. NO 1	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO 1	3
(a)	Solve by linear differential Equation of First Order $(x+1)\frac{dy}{dx} - y = e^x(x+1)^2$		
(b)	Solve by Exact Differential equation method $\begin{cases} 2 \operatorname{rw} \cos x^2 - 2 \operatorname{rw} + 1 \end{cases} dx + \begin{cases} \sin x^2 - x^2 + 3 \end{cases} dy = 0$	CO 1	3
	$\left(2\lambda y \cos x - 2\lambda y + 1\right) d\lambda + \left(\sin x - x + 0\right) + 0$	CO 1	3
(c)	Solve the Non Linear Differential equation $y = 2px + yp^{*}$		-
(d)	Find the value of λ , for which the differential equation $(xy^2 + \lambda x^2 y)dx + (x + y)x^2dy = 0$	CO 1	3
	is exact. Solve the equation for the value of λ .	CO 1	2
(e)	Solve : $\mathbf{x}^2 = 1 + \mathbf{p}^2$	101	3

0. 11. 2	Auto and East Question Carries 5 Marks.	CO	BL
Q. NO 2 (a)	Solve the differential equation $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 5e^{3x}$	CO 2	3
(b)	Solve the following Simultaneous Differential Equation $\frac{d^2y}{dx^2} - 3x - 4y = 0, \frac{d^2y}{dx^2} + x + y = 0$	CO 2	3
(c)	$\frac{dx^2}{dx^2} = \frac{dx^2}{dx^2}$ Solve the following Cauchy Euler Homogeneous Linear Differential Equation. $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx^2} + y = \sin(\log x^2)$	CO 2	3
(d)	$\frac{dx^2}{dx} = \frac{dx}{dx}$ Solve the following differential equation by method of variation of parameters $\frac{d^2y}{dx^2} - y = \frac{2}{1 + e^x}$	CO 2	3
(e)	Solve $\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$ by changing the independent variable from x to z.	CO 2	3

0 No 3	Attempt Any Four Parts, Fach Question Carries 5 Marks.	СО	BL
Q. NO 3 (a)	Test for convergence the Series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$	CO 3	2
(b)	Discuss the convergence of the following series $\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots \infty$	CO 3	2
(c)	Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier expression of $f(x)$. Deduce that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$	CO 3	3
(d)	Test the convergence and divergence of the following series: $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5}$	CO 3	2
(e)	The series $1 + r + r^2 + r^3 + \infty$ is (i) convergent if $ r < 1$ (ii) divergent if $r \ge 1$ (iii) oscillatory if $r \le -1$.	CO 3	3

¹ 122

0. No 4	Attempt Any Two Parts, Each Question Carries 10 Marks.	CO	BL	
(2)	Attempt Any Two Parts, Each Question Carries to Plants	CO 4	3	
(4)	From the Partial Differential equation from $z = f(x^2 - y^2)$			-
(b)	Solve the Partial Differential equation $\frac{\partial^3 z}{\partial x^3} - 3\frac{\partial^3 z}{\partial x^2 \partial y} + 4\frac{\partial^3 z}{\partial y^3} = e^{x+2y}$	CO 4	3	
(c)	A tightly stretched string with fixed end points $x = 0$ and $x = 1$ is initially in a position	CO 4	3	
	given by $y = y_0 \sin^3(\frac{\pi x}{l})$. If it is released from rest from this position, find the			
	displacement y (x, t).			_

0. No 5	Attempt Any Two Parts, Each Question Carries 10 Marks.	CO	BL
(a)	Show that the function $e^{x}(\cos y + i \sin y)$ is an analytic function, find its derivative.	CO 5	2
(b)	Define a Harmonic function and conjugate harmonic function. Find the harmonic conjugate function of the function $u(x, y) = 2x(1-y)$	CO 5	2
(c)	Evaluate $\int_{C} \frac{e^{z}}{(z^{2}+1)} dz$, where C is $ z = 2$.	CO 5	3

--End of Paper-----

isti Mari

è