V

-

?

?

-

~

COER University

END SEMESTER EXAMINATION, EVEN SEM 2022-23 (BACK PAPER)

Time : 3 hours

Program Name : BCA

Course Name : Basics of Digital Electronics

Semester : II **Course Code : SOC156**

Note: All questions are compulsory. No student is allowed to leave the examination hall before the completion of the time.

Q. No 1	Attempt Any Four Parts, Each Question Carries 5 Marks,	СО	BL
(a)	What is parity? Explain even and odd parity methods with their respective truth tables	CO 1	2,3
	for 4-bit data.		
(b)	Convert the following numbers as indicated; a) $(111110101)_2 = (2)_{10}$ b) $(476.23)_{10} = (2)_8$ c) $(B9C.24D)_{16} = (2)_2$	CO 1	3
(c)	What is multiplexer tree? Design 32:1 MUX by using 8:1 MUX and 2:1 MUX.	CO 1	2,4
(d)	Convert the 187 decimal number to 8-bit binary and 111111110010 to hexadecimal.	CO 1	3
(e)	Find the Excess 3 code for decimal number 81.61	CO 1	3

Q. No 2	Attempt Any Four Parts. Each Question Carries 5 Marks.	СО	BL
(a)	Differentiate 1's and 2's complement methods of subtraction. Subtract following by using 1's and 2's complement methods of subtraction;	CO 2	2,3
1	i) $(1101)_2 - (1001)_2$ ii) $(33)_{10} - (27)_{10}$		
(b)	Subtract the following numbers by using respective complement methods of subtraction:	CO 2	3
	i) $(1100)_2 - (011)_2$ ii) $(73)_8 - (63)_8$	4	
(c)	Implement the following function by using Basic gates: $f = \overline{A}BCD + B\overline{C}\overline{D} + A\overline{C} + AB\overline{C}$	CO 2	3
(d)	Differentiate 1's and 2's complement methods of subtraction. Subtract following by using 1's and 2's complement methods of subtraction; i) $(1101)_2 - (1001)_2$ ii) $(33)_{10} - (27)_{10}$	CO 2	2,3
(e)	Convert the decimal numbers into binary and divide them in binary 55 ÷ 5	CO 2	3
		1	
O. No 3	Attempt Any Four Parts. Each Question Carries 5 Marks.	СО	BL
(a)	Give classification of logic families. What parameters govern performance of logic family? Briefly explain each parameter.	CO 3	2
(h)	Explain tri-state output configuration of TTL logic family.	CO 3	2
(c)	Design AND gate, OR gate, NOR gate using NMOS.	CO 3	2,3
(d)	Explain working of ECL logic family.	CO 3	2
(e)	Explain the Tri-state Digital Buffer Data Bus Control with diagram.	CO 3	2
	IVS WA		
Q. No 4	Attempt Any Two Parts. Each Question Carries 10 Marks.	CO	BL
(a)	Simplify following by using K-Map and design the expression by using basic gates.	CO 4	3

(a)	Simplify following by using K-Map and design the expression by using basic gates.	CO 4	3
	i) $F = \sum_{m} (1, 3, 5, 7, 11, 12, 14, 13)$ ii) $F = \sum_{m} (0, 1, 4, 7, 9, 13, 15) + \sum_{d} (2, 8, 12)$		
(b)	Define and differentiate SOP and POS with the help of suitable example. Obtain minterms and maxterms for the following expressions:	CO 4	2,3
	i) $f = \overline{ABC} + B\overline{C} + A\overline{C}$ ii) $f = (\overline{A} + B + C) (A + C)$		
(c)	Obtain truth-table for the following boolean expressions:	CO 4	3
	i) $f = A\overline{C} + \overline{A}B + ABC$ ii) $f = (\overline{A} + \overline{B})(A + \overline{B} + \overline{C})$		

Total Marks : 100

Q. No 5	Attempt Any Two Parts. Each Question Carries 10 Marks.	СО	BL
(a)	Draw the NAND gates-based full adder circuit with its truth table.	CO 5	
(b)	Draw the logic circuit of full subtractor with its truth table.	CO 5	
(c)	Explain working of 3:8 decoder with neat and clean diagram. Design following by using appropriate decoder: $F_1 = \sum m (1, 2, 3, 7)$ $F_2 = \sum m (1, 5, 6)$ $F_3 = \sum m (1, 3, 5, 6)$	CO 5	2,4

NERSI,

ard

--End of Paper-----

(分) (明史 (明史 5555555

C

6

C

C

C

C

C

C

C

C

C

6