2	(159	SET-I	1
Roll No.			
~	COEP University		
	END SEMESTER EXAMINATION, EVEN SEMESTER, 2023-24		
Time	: 3 hour Semester : VI Total Marks	: 100	
Course Co	de : SOC310 Course Name : Cryptography & Network Sec	urity	
Note: All que	stions are compulsory. No student is allowed to leave the examination hall before the completion of the time		
Q. No 1	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO	BL
(a)	Illustrate the following equation using Chinese Remainder Theorem.	CO 1	3
	$X = 2 \pmod{3}$ $X = 2 \pmod{5}$		
	X = 3(Mod 5) $X = 2(Mod 7)$		
(b)	Define groups, rings, and fields in the context of number theory. How are these	CO 1	3
	structures used in modern cryptography?		
(c)	Explain Euler's Totient function and Euler's Theorem with suitable example. Also,	CO 1	2
0	enlist the applications.	CO 1	2
(d)	Prove that Fermat's theorem hold for the following or not? P = 5 = 2	01	3
	1. $P=5, a=2$ II $P=6, a=2$		
(e)	Describe Euclid's algorithm for finding the greatest common divisor (GCD) of two	CO 1	2
(0)	integers. Provide an example illustrating its usage.	1	
0 No 2	Attempt Any Four Parts, Each Question Carries 5 Marks.	CO	BL
(a)	Discuss why AES eventually replaced 3DES as the preferred symmetric encryption	CO 2	2
(-)	standard despite 3DES being more widely used initially.	1	
(b)	Illustrate encryption and decryption using the RSA algorithm for the following:	CO 2	3
9	p=17; q=31; e=7; M=2	CO 2	
(c)	Discuss a real-world application scenario where public key cryptography is more	02	2
(4)	Suitable man symmetric key cryptography. Explain the process of key generation distribution, and storage in a cryptographic	CO 2	2
(u)	system		_
(e)	Illustrate Diffie-Hellman Key Exchange algorithm and How does Diffie-Hellman	CO 2	2
	contribute to secure communication over an insecure channel?		
🥥 Q. No 3	Attempt Any Four Parts. Each Question Carries 5 Marks.	СО	BL
(a)	Discuss the principles of digital signatures and their role in ensuring message	CO 3	2
(1)	authenticity and integrity.	CO 2	2
🥼 (b)	Describe the purpose and functionality of a Message Authentication Code (MAC) in	03	4
(c)	Compare MD5 and SHA algorithms.	CO 3	3
(d)	Describe the Digital Signature Algorithm (DSS). How does it ensure the authenticity	CO 3	3
(-)	and integrity of a digital message?		
🧊 (e)	Define HMAC (Hash-based Message Authentication Code). How does HMAC	CO 3	2
-	enhance the security of traditional MAC algorithms.		1

1

Q. No 4	Attempt Any Two Parts, Each Question Carries 10 Marks.	CO	BI
(a)	Explain the concept of firewall designs and the principles that should guide the construction of a firewall far it to be effective.	CO 4	3
(b)	Discuss various threats encountered in computer systems. Differentiate among viruses, worms and Trojans	CO 4	2
(c)	Define an intruder in the context of network security. Also define the motivations and techniques commonly employed by intruders to compromise system security?	CO 4	2

Q. No 5	Attempt Any Two Parts Fact On all a standard			
(a)	Discuss email authenti-	CO	BL	
	Discuss techniques used for email sender authentication, such as SPF, DKIM, and DMARC.	CO 5	2	-
(b)	Differentiate between ID and ID (1
(c)	Discuss how IPv6 addresses security concerns present in IPv4. Explain the Secure/Multinumose Internet Mail Explain the Secure/Multinumose Internet Mail Explain	CO 5	3	
	does S/MIME enhance email security.	CO 5	2	ļ

¢.

9-9-0-

and it

Real Property

-----End of Paper-----