Roll No.

COER University END SEMESTER EXAMINATION, EVEN SEM 2022-23

	: 3 hours Total Marks : 100 Iame : BCA Semester : II		
	me : Data Structures using C Course Code : BCA201/		2
ote: All ques	tions are compulsory. No student is allowed to leave the examination hall before the completion of the time	CO	BL
Q. No 1	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO 1	1
(a)	What is a data structure? Why do we need data structures?	CO 1	1
(b)	Describe abstract data type (ADT) with example. Mention the features of ADT.	CO 1	2
(c)	What do you mean by Asymptotic Notations for complexity of algorithm? List the		
	commonly used asymptotic notations and explain any one.	CO 1	1
(d)	What do you mean by Algorithm Analysis? List the type of Algorithm Analysis and		
()	explain any one. Compare linear and non-linear data structure. Give examples of each. What are	CO 1	4
(e)	common operations that can be performed on a data-structure?		
	common operations that can be performed on a data structure.		
	Automation Carries 5 Marks	СО	BL
Q. No 2	Attempt Any Four Parts. Each Question Carries 5 Marks. Describe array? How to declare and initialize one dimensional array?	CO 2	2
(a)	Differentiate Array and Link list in context of memory representation.	CO 2	4
(b)	Differentiate Array and Link list in context of memory representations	CO 2	1
(c)	Define Stack. What are the applications of the stack? Write down the prefix and postfix forms of each of the following infix expressions:	CO 2	3
(d)	Write down the prefix and postfix forms of each of the following mink expressions:		
	A*B-(C+D)-(E-F)+G/H.	CO 2	4
(e)	Illustrate an algorithm to push and pop an element in a stack.	1	
0 No 7	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO	BL
Q. No 3	Define anound What are the operations of a queue?	CO 3	1
(a)	Construct a Consorram to remove duplicates from a single unsorted linked list.	CO 3	3
(b)	will the times of linked lists? How the singly linked listscan be represented?	CO 3	1
(c)	Evaluate how the singly linked lists can be traverse represented. Explain with the help	CO 3	5
(d)			
	of C code. Write an algorithm to insert an element in a circular queue.	CO 3	3
(e)	Write an algorithm to insert an element in a chedial queue.		
	Attempt Any Two Parts. Each Question Carries 10 Marks.	CO	BI
Q. No 4	and binary search techniques to search and binary	CO 4	2
(a)	the second technique with a suitable example.		
	(ii) Explain the linear search technique with a suitable example. What is a Binary Search Tree (BST)? What are the different ways of representing a Binary	CO 4	3
(b)	Tree? Apply BST for the following sequence of numbers.		
	47, 55, 23, 17, 39, 11, 50, 9, 19, 74, 33, 28		
	Explain selection sort algorithm with suitable example.	CO 4	3
(c)			
	Attempt Any Two Parts. Each Question Carries 10 Marks.	СО	B
Q. No 5	the suite on avample	CO 5	3
(a)	i' to I woighted graph write Kriskals apolitili to find the infinitum spanning	CO 5	3
(b)	Given an undirected weighted graph, while transmissing upgetting the given graph: tree of the graph. Also, construct the minimum spanning tree for the given graph:		
	$\begin{array}{c} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		
(c)	Illustrate the steps of Depth-first search technique of graph withsuitable example.	CO 5	4

•

79

-----End of Paper-----

2