Roll	Ν	0
------	---	---

Time

6

c c c c c c c c c c c

U

U

U

()

U

0

•

0

U

~

-

1

.

: 3 hours

Program Name : B.Tech (CE, ME, EEE)

Course Name : Physics (Engineering)

Total Marks : 100 : 11 Semester

2

1

Course Code : BTBS202

Note: All questions are compulsory. No student is allowed to leave the examination hall before the completion of the time.

		CO	BL
Q. No 1	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO 1	2
(a)	What are the conditions for good interference pattern?	CO 1	1,2
(b)	Define coherent sources. Discuss why two independent sources of light of same wave	00 -	
	length cannot show interference of light.	CO 1	4
(c)	If a thin plate of material with t=0.001 cm is placed in the path of one of the beams, the central fringe shifts to a place occupied by 10^{th} fringe. Calculate the refractive		
	index of the material of the plate.	CO 1	4
(d)	What are Newton's rings? Draw a clear diagram pointing out the interfering ocanis in		
	a Newton's ring experiment.	CO 1	2
(e)	Explain the difference between interference and diffraction.		
	E Marka	CO	BL
Q. No 2	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO 2	2
(a)	Describe double refraction and specific rotation.	CO 2	4
(h)	What is retardation plate? Draw a ray diagram for extra-ordinary and ordinary rays		

(0)	what is related on place. Draw a lay chage a		
	before and after passing through a quarter wave plate.	CO 2	2
(c)	What is population inversion? How is it achieved? Explain.	CO 2	2
(d)	Describe the construction and working of ruby laser. What are the drawbacks of Ruby		
	Laser.	CO 2	3
(e)	Explain acceptance angle and numerical aperture.		

	Comics E Marks	CO	BL
Q. No 3	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO 3	4
(a)	If the magnitude of H in plane e.m wave is 1 Amp/m. Calculate the magnitude of B for		
	plane wave in free space. Assume the values of the constant used.	CO 3	4
(b)	Differentiate dia, para and ferromagnetic substances.	CO 3	1,3
(c)	Write and derive Maxwell's fourth equation.	CO 3	4
(d)	Distinguish diamagnetic, paramagnetic and terromagnetic materials. Giving energy		
	example of each.	CO 3	4
(e)	If the earth receives 2 cal min ⁻ cm ⁻ solar energy, what are the amplitudes of electric		
	and magnetic fields of radiation? Calculate.		

	The Date Each Question Carries 10 Marks.	CO	BL
Q. No 4	Attempt Any Two Parts. Each Question carries to rearres to rearres to rearres a particle.	CO 4	2
(a)	Describe Davisson-Germer experiment to demonstrate the wave equation. Discuss	CO 4	3
(b)	Derive time independent and time dependent Schoolinger wate equation 2		
	physical significance of the state function ϕ ? What condition matching physical significance of the state function ϕ ? What condition matching is a posticular state of the state function ϕ ?	CO 4	4
(c)	Solve the Schrödinger equation for a particle enclosed in a one dimensional right con- of side L. Obtain its Eigen values and Eigen functions. Draw a graph of its first three		
	Figen functions and their corresponding probability density.		

	the Two Darte Each Question Carries 10 Marks.	CO	BL
Q. No 5	What is meant by P-type and N-type semiconductor? How are those developed from	CO 5	2
(a)	pure germanium? Explain. Indicate the position of Fermi level in the energy level		
	diagram in both case.	CO 5	2,4
(b)	characteristics of PN junction under forward and reverse biasing.		
(c)	Discuss the energy momentum diagram to explain the existence of bandgap in materials? On the basis of energy momentum diagram define direct and indirect band gap semiconductors.	CO 5	2
	gap semiconductors.		

-----End of Paper-----