00000000000

102)

END SEMESTER EXAMINATION, EVEN SEM 2022-23

Time : 3 hours Total Marks : 100

Program Name: B.Tech.(Honors)-CSE, CSE(AI&ML,CSE(Cyber Security)

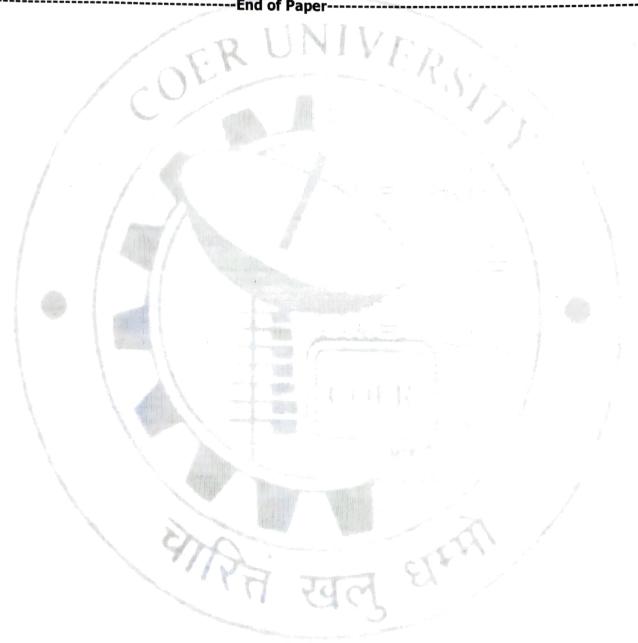
Course Name: Theory of Automata and Formal Languages

Semester: IV

Course Code: SOC204

Note: All questions are compulsory. No student is allowed to leave the examination hall before the completion of the time.

Q. No 1	Attempt Any Four Parts. Each Question Carries 5 Marks.	СО	BL
(a)	Briefly discuss about Finite Automata with Epsilon- Transitions.	CO 1	2
(b)	Design a DFA which accepts set of all strings which are divisible by 5 for binary alphabet.	CO 1	6
(c)	Find the regular expression from the given FA.	CO 1	3
(d)	What do you understand by a generalized transition graph (GTG)?	CO 1	1
(e)	Prove that regular set $L=\{a^k \mid k \text{ is a prime number}\}\$ is not regular.	CO 1	6


Q. No 2	Attempt Any Four Parts. Each Question Carries 5 Marks.	CO	BL
(a)	Construct the regular grammar from the following finite automata. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO 2	3
(b)	Obtain the regular expression from the following finite automata.	CO 2	1
(c)	Define Regular Expression? Explain about the Properties of Regular Expressions.	CO 2	2
(d)	Design a Mealy Machine that prints "a" whenever the sequence "01" is encountered in any input binary string.	CO 2	6
(e)	Evaluate the regular grammar that generates the language $\{w \mid w \text{ contains an even number of 0s}\}$ over $\sum = \{0,1\}^*$.	CO 2	5

Q. No 3	Attempt Any Four Parts. Each Question Carries 5 Marks.	СО	BL
(a)	Explain about Ambiguity in Grammars and Languages with example.	CO 3	2
(b)	What are the decision problem of CFLs? Explain each problem.	CO 3	1
(c)	Simplify the following grammar. $S\rightarrow AB BC aACb a$, $A\rightarrow AAB BD abD C$, $C\rightarrow CA S a$, $D\rightarrow d$, $E\rightarrow ab$	CO 3	5
(d)	Define Chomsky Normal Form (CNF). Convert the following grammar to CNF S- $>0S0 1S1 \in$.	CO 3	2
(e)	Construct CFG without ε – production from the one which is given below $S \to a \mid Ab \mid aBa$ $A \to b \mid \varepsilon$ $B \to b \mid A$	CO 3	6

Q. No 4	Attempt Any Two Parts. Each Question Carries 10 Marks.	СО	BL
(a)	Convert the grammar S->0AA, A ->0S/1S/0 to a PDA that Accepts the same	CO 4	3
	Language by Empty Stack.		
(b)	Define the Concept and working of a PDA. Why can't we use queue data structure in	CO 4	5
	PDA as an auxiliary memory?		
(c)	Construct a PDA accepting {a ⁿ b ^m a ⁿ m, n≥1} by null store. From the PDA construct	CO 4	5
` ,	the corresponding CFG.		

Q. No 5	- Complany Two Parts, Each Question Carries 10 Marks.	СО	BL
(1)	Give the correspondence between P. NP and NP-complete problems.	CO 5	4
(b)	Write short notes on the following:	CO 5	5
	(1) UTM.		
	(2) Church-Turing thesis		
	(3) Recursive language		
(c)	Construct a Turing Machine that will accept the Language consists of all palindromes	CO 5	6
	of 0's and 1's?		

-End of Paper---

